Charge-directed targeting of antimicrobial protein-nanoparticle conjugates.

نویسندگان

  • Rohan Satishkumar
  • Alexey Vertegel
چکیده

Use of antimicrobial enzymes covalently attached to nanoparticles is of great interest as an antibiotic-free approach to treat microbial infections. Intrinsic properties of nanoparticles can also be used to add functionality to their conjugates with biomolecules. Here, we show in a model system that nanoparticle charge can be used to enhance delivery and increase bactericidal activity of an antimicrobial enzyme, lysozyme. Hen egg lysozyme was covalently attached to two types of polystyrene latex nanoparticles: positively charged, containing aliphatic amine surface groups, and negatively charged, containing sulfate and chloromethyl surface groups. In the case of bacterial lysis assay with a Gram-positive bacteria Micrococcus lysodeikticus, activity of lysozyme conjugated to positively charged nanoparticles was approximately twice as large as that of free lysozyme, while lysozyme conjugated to negatively charged nanoparticles showed little detectable activity. At the same time, when assayed using a low-molecular weight oligosaccharide substrate, lysozyme attached to both positively and negatively charged nanoparticles showed slightly lower activity than free enzyme. A possible explanation of these results is that lysozyme attached to negatively charged nanoparticles cannot be effectively targeted to the bacteria because of the electrostatic Coulombic repulsion from the negatively charged bacterial cell walls, whereas lysozyme conjugated to positively charged nanoparticles was targeted better than free enzyme due to stronger electrostatic attraction to bacteria. Zeta potential measurements confirmed the validity of this hypothesis. Thus, nanoparticle charge is an important factor that can be used to control targeting and activity of protein-nanoparticle conjugates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed nanoparticle labeling of cytochrome c.

Although nanoparticle-protein conjugates have been synthesized for numerous applications, bioconjugation remains a challenge, often resulting in denaturation or loss of protein function. This is partly because the protein-nanoparticle interface is poorly understood, which impedes the use of nanoparticles in nanomedicine. Although the effects of nanoparticle ligand and material on protein struct...

متن کامل

Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design

Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...

متن کامل

Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design

Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...

متن کامل

Electrophoretic and Structural Studies of DNA-directed Au Nanoparticle Groupings

Discrete Au nanoparticle/DNA conjugates have been isolated by electrophoresis and used to form small groupings of particles, such as dimers and trimers. The use of purified conjugates leads to a higher yield of the target structure, and it has allowed us better control and understanding of the system. Newly accessible questions, such as the electrophoretic mobility of nanoparticle/DNA hybrids a...

متن کامل

The Effect of Hydrophobicity and Hydrophilicity of Gold Nanoparticle on Proteins Structure and Function

The surface parameter of nanoparticles such as hydrophobicity and a hydrophilicity on protein structure and function is very important. In this study, conformational changes of glucose oxidase (GOx) in the mercaptopurine: GNPs and 11-mercaptoundecanoic acid: GNPs as a hydrophobic and a hydrophilic GNPs surface was investigated by various spectroscopic techniques, including: UV-Vis absorption, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2008